Asymptotic notations and their properties
Asymptotic notations are used to analyze and determine the running time of an algorithm.
There are three main types of asymptotic notations:
Big-ohnotation: Big-oh is used for upper bound values.Big-Omeganotation: Big-Omega is used for lower bound values.Thetanotation: Theta is used for average bound values.
Properties of Asymptotic Notation
General properties
-
If
f(n)isBig-Oh(g(n)), thena*f(n)isBig-Oh(g(n)) -
If
f(n)isOmega(g(n)), thena*f(n)isOmega(g(n))
Reflexive
- If
f(n)is given, thenf(n)isBig-Oh(f(n))
Transitive
- If
f(n)isBig-Oh(g(n))andg(n)isBig-Oh(h(n)), thenf(n)=Big-oh(h(n))
Example
then
Symmetric
If f(n) is theta(g(n)), then g(n) is theta(f(n))
Suppose
Transpose symmetric
If f(n) = Big-Oh(g(n)), then g(n) is Omega(f(n))
Example
and
Tmhen n is and is