How to concatenate two DataFrames in Polars Python
Polars, like pandas, utilizes a DataFrame-like structure to manage tabular data. However, Polars introduces its own DataFrame, which is built on Rust, a high-performance programming language. This design choice enables Polars to deliver impressive speed and memory efficiency.
Concatenating DataFrames
To concatenate two DataFrames in Polars (Python), we can use the concat() method. This method concatenates rows from one DataFrame to another, resulting in a new concatenated DataFrame.
Syntax
Here’s the syntax of the concat() method:
concatenated_dataframe = pl.concat([Dataframe1, Dataframe2])
Parameters
Dataframe1andDataframe2: These are two-dimensional data structures representing data as a table with rows and columns.
Example code
Let's concatenate two DataFrames using the concat() method. Here's the sample code in Python:
import polars as pl# DataFrame 1dataframe1 = {'Id': [10, 11, 12, 13, 14],'Item': ['Apple', 'Mango', 'Banana', 'Cherry', 'Peach']}D1 = pl.DataFrame(dataframe1)# DataFrame 2dataframe2 = {'Id': [15, 16, 17, 18, 19],'Item': ['Guava', 'Raspberry', 'Strawberry','Apricot', 'Orange']}D2 = pl.DataFrame(dataframe2)# Concatenate dataframes using concat() functionconcatenated_dataframe = pl.concat([D1, D2])print(concatenated_dataframe)
Explanation
In the example code above:
Line 1: We import the required
polarslibrary.Lines 4–8: We create the first DataFrame named
D1.Lines 11–15: We create the second DataFrame named
D2.Line 18: We concatenate the DataFrames
D1andD2using thepl.concat()method and store the results in DataFrameconcatenated_dataframe.Line 19: We use the
print()function to display the concatenated DataFrame.
Unlock your potential: Polars in Python series, all in one place!
To continue your exploration of Polars, check out our series of Answers below:
How to scale and normalize data in Python using Polars
Learn how to transform raw data using Python's Polars library to scale it (0-1) and normalize it (mean 0, std 1).What is DataFrame.clear function in Polars Python?
Learn how to use Polars'DataFrame.clear()to create a null-filled copy, either empty ifn=0or withnnull rows.How to reverse a DataFrame in Polars Python?
Learn how to use Polars, a Rust-based DataFrame library for Python, which offers areverse()function to efficiently revert DataFrame rows, providing an alternative to pandas.How to rename the column names in Polars Python?
Learn how to use Polars'rename()function to efficiently rename DataFrame columns using key-value pairs, enhancing data management and processing.What is Polars library in Python?
Learn how Polars, a fast DataFrame library in Rust for Python, offers high-performance data manipulation and analysis similar to Pandas.How to concatenate two Dataframes in Polars Python
Learn how Polars, leveraging Rust, offers efficient DataFrame concatenation in Python with theconcat()method.How to perform a transpose of a Python Polars DataFrame
Learn how to use Polars'DataFrame.transpose()to efficiently transpose DataFrames, with options for including headers and custom column names, enhancing data manipulation capabilities.How to check the polars version in Python
Learn how to ensure the correct Polars version by usingpip3 show polarsor by printingpl.__version__in Python.What is DataFrame.update function in Polars Python?
Learn how to use theupdate()function in Polars to merge two DataFrames, updating the target with non-null values from the source, and supporting various join strategies.
Free Resources