Trusted answers to developer questions
Trusted Answers to Developer Questions

Related Tags

numpy
communitycreator

How to mask an array where invalid values occur in NumPy

Onyejiaku Theophilus Chidalu

Overview

The masked_invalid() function in NumPy is used to mask an array where invalid values occur. These invalid values could be NaNs or infs.

Syntax

ma.masked_invalid(a)
Syntax for the masked_invalid() function

Parameters

The masked_invalid() function takes a single parameter value, a, which is an array.

Return value

The masked_invalid() function returns a masked array.

Example

# A code to illustrate the masked_invalid() function 

# importing the necessary libraries
import numpy as np
import numpy.ma as ma

# creating an input array
my_array = np.array([1, 2, 3, np.NaN, 5, 6, np.PINF, 8, 9, np.NaN])

# printing the array
print(my_array)

# masking the values greater than 2
mask_array =ma.masked_invalid(my_array, 2)

print(mask_array)
Implementing the masked_invalid() function

Explanation

  • Line 4–5: We import the necessary library and module.
  • Line 8: We create an input array, my_array, containing some invalid values.
  • Line 11: We print the input array, my_array.
  • Line 14: We mask the invalid values of the input array using the masked_invalid() function. The result is assigned to a variable, mask_array.
  • Line 16: We print the masked array, mask_array.

RELATED TAGS

numpy
communitycreator

CONTRIBUTOR

Onyejiaku Theophilus Chidalu
RELATED COURSES

View all Courses

Keep Exploring