The cummsum()
function of a DataFrame object is used to obtain the cumulative sum over its axis.
Note: Axis here simply represents the row and column of the DataFrame. An axis with a value of
0
indicates the axes running vertically downwards across a row, while a value of1
indicates the axes running horizontally across a column.
DataFrame.cumsum(axis=None, skipna=True, *args, **kwargs)
axis
: This represents the name for the row ( designated as 0
or 'index'
) or the column (designated as 1
or columns
) axis.skipna
: This takes a boolean value indicating if null values are to be excluded or not. This is an optional parameter.args
, **kwargs
: These keywords have no effect but may be accepted for compatibility with NumPy. These are optional.This function returns a Series or DataFrame object showing the cumulative maximum in the axis.
# A code to illustrate the cumsum() function in Pandas # importing the pandas library import pandas as pd # creating a dataframe df = pd.DataFrame([[5,10,4,15,3], [1,7,5,9,0.5], [3,11,13,14,12]], columns=list('ABCDE')) # printing the dataframe print(df) # obtaining the cummulative sum vertically across rows print(df.cumsum(axis="index")) # obtaining the cummulative sum horizontally over columns print(df.cumsum(axis="columns"))
pandas
library.df
.df
.cumsum()
function to obtain the cumulative maximum values running downwards across the rows (axis 0
). We print the result to the console.cumsum()
function to obtain the cumulative maximum values running horizontally across columns (axis 1
). We print the result to the console.RELATED TAGS
CONTRIBUTOR
View all Courses