The sinh()
function in D calculates and returns the hyperbolic sine of a number.
The illustration below shows the mathematical representation of the sinh()
function.
Note: We need to import
std.math
in our code to use thesinh()
function. We can import it like this:import std.math
sinh(num)
This function requires a number that represents an angle in radians as a parameter.
The following formula converts degrees to radians.
radians = degrees * ( PI / 180.0 )
sinh()
returns a number’s hyperbolic sine (radians), which is sent as a parameter.
The code below shows how to use the sinh()
function in D:
import core.stdc.stdio;import std.stdio;//Header required for the functionimport std.math;int main(){//Positive number in radianswriteln("The value of sinh(2.3) :", sinh(2.3));// Negative number in radianswriteln("The value of sinh(-2.3) :", sinh(-2.3));//Convert the degrees angle into radians and then apply sinh()// degrees = 90.0// PI = 3.14159265// The result first converts the degrees angle into radians and then applies sinh()double result=sinh(90.0 * (PI / 180.0));writeln("The value of sinh(90.0 * (PI / 180.0)) ", result);//Exceptional outputwriteln ("The value of sinh(real.infinity) : ",sinh(real.infinity));writeln ("The value of sinh(-real.infinity) : ",sinh(-real.infinity));writeln ("The value of sinh(real.nan) : ",sinh(real.nan));writeln ("The value of sinh(-real.nan) : ",sinh(-real.nan));return 0;}
Line 4: We add the std.math
header required for the sinh()
function.
Line 9: We calculate the hyperbolic sine of a positive number in radians using sinh()
.
Line 12: We calculate the hyperbolic sine of a negative number in radians using sinh()
.
Lines 18 to 19: The variable result
first converts degrees to radians, and then applies sinh()
.
Line 21 onwards: We calculate the hyperbolic sine of exceptional numbers using sinh()
.