...

/

Logistic Regression Steps: 8 and 9

Logistic Regression Steps: 8 and 9

This lesson will finish introducing the implementation steps (8-9) of logistic regression.

8) Predict

Let’s use our model now to predict the likely outcome of an individual Kickstarter campaign based on the input of its independent variables.

C++
#8. Predict
model_predict = model.predict(X_test)
new_project = [
0, #Comments
9, #Rewards
2500, #Goal
157, #Backers
31, #Duration in Days
319, #Facebook Friends
110, #Facebook Shares
1, #Creator - # Projects Created
0, #Creator - # Projects Backed
0, ## Videos
12, ## Images
872, ## Words (Description)
65, ## Words (Risks and Challenges)
0, ## FAQs
0, #Currency_AUD
1, #Currency_CAD
0, #Currency_EUR
0, #Currency_GBP
0, #Currency_NZD
0, #Currency_USD
0, #Top Category_Art
0, #Top Category_Comics
0, #Top Category_Crafts
0, #Top Category_Dance
0, #Top Category_Design
0, #Top Category_Fashion
1, #Top Category_Film & Video
0, #Top Category_Food
0, #Top Category_Games
0, #Top Category_Journalism
0, #Top Category_Music
0, #Top Category_Photography
0, #Top Category_Publishing
0, #Top Category_Technology
0, #Top Category_Theater
#0, #Facebook Connected_No
#0, #Facebook Connected_Yes
#0, #Has Video_No
#1, #Has Video_Yes
]
new_pred = model.predict([new_project])
print(new_pred)

According to the positive binary outcome of our model [1], the new campaign is ...