Building the Model

In classification tasks, learn to create, tune, plot, save and make predictions from the machine learning model.

Creating the model

We’ll use the create_model() function to train the Linear Discriminant Analysis model because it performed best in the model comparison.

Press + to interact
# Creating the model
model = create_model('lda')

Model


Accuracy

AUC

Recall

Prec.

F1

Kappa

MCC

0

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

2

0.9167

1.0000

0.9167

0.9333

0.9153

0.8750

0.8843

3

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

4

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

5

0.9167

1.0000

0.9167

0.9333

0.9153

0.8750

0.8843

6

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

7

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

8

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

9

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

Mean

0.9833

1.0000

0.9833

0.9867

0.9831

0.9750

0.9769

SD

0.0333

0.0000

0.0333

0.0267

0.0339

0.0500

0.0463

This function uses stratified kk-fold cross-validation to evaluate model accuracy, a variation of the standard kk-fold technique used in the Regression chapter. The dataset is consecutively partitioned into kk subsamples, with one subsample being retained for validation, while the rest are used to train the model. The difference between stratified kk-fold and standard kk-fold is that subsamples are stratified to preserve the ...