Solution: Conduct a Series of One-way ANOVAs
Let's look at the solution to the previous exercise.
Solution
As always, let’s look at the structure to make sure everything looks good.
R
str(RxP.byTank)
Check the distribution
Let’s check the best distribution to use for the final Mass
data. We’ll first examine the raw and log-transformed histograms. Then, we’ll test the distributions using the fitdistr()
function from the MASS package.
R
plot1<-qplot(data=RxP.byTank, x=Mass.final, ylab="occurrences", geom="histogram")plot2<-qplot(data=RxP.byTank, x=log(Mass.final), ylab="occurrences", geom="histogram")plot_grid(plot1,plot2)
The log transformation appears to help a bit, at least graphically. Let’s see the use of the fitdistr()
function:
R
fit1<-fitdistr(RxP.byTank$Mass.final, "normal")fit2<-fitdistr(RxP.byTank$Mass.final, "lognormal")AIC(fit1,fit2)
Indeed, log transformation helps improve the normality of the data. Now, let’s hard code a log-transformed version of the data.
RxP.byTank$log.Mass.final<-log(RxP.byTank$Mass.final)
Now, we’re ready to do some analyses! ...