Mini Map
Search
⌘ K
Log In
Data Science in R: From Basics to Machine Learning
0%
1.
Why R?
Course Overview
What is R?
Why Data Scientists Need R
Quiz: R Overview
2.
R Fundamentals
Basic R Syntax
Flow Control
Data Frames
Matrices
Getting Organized—Libraries and Working Directories
Loading External Data
Quiz: R Fundamentals
Mini Project
Premium
R Fundamentals Exercises
3.
Readable Coding with tidyverse
Tidyverse Overview
Special Data Type—tibbles
Compounding Commands with the Pipe Operator
Joins and Lookups
Filtering Datasets
Stacking and Unstacking Data
Applying Complex Row-by-Row Operations
Important Tidyverse Functions for Data Science
Quiz: Tidyverse
Mini Project
Premium
Tidyverse Exercises
4.
Importing More Data Sources
Database Connections
Web Data
Microsoft Excel
Quiz: Data Import
5.
Data Visualization with ggplot2
Why ggplot2?
Basic Plots in ggplot2
Customizing ggplot2 Plots
Faceting and Saving Plots
Quiz: The ggplot2 Package
6.
Best Practices for Data Scientists
Variable Naming Conventions
Creating Functions
Project Structure
7.
Statistical Analysis and Machine Learning with tidymodels
Getting Started with tidymodels
Linear Regression
Random Forest
Hyperparameter Tuning with Random Forest
Neural Networks
Quiz: The tidymodels Package
Mini Project
Premium
Exploring tidymodels through Exercises
8.
Useful Libraries for Data Science
Date and Time—Lubridate
String Manipulations—The stringr Package
Mapping—The ggmap Package
Checking Data—The skimr Package
Quiz: Useful Libraries
9.
Git Integration
Git and GitHub Overview
R Projects
Using Git with R
Next Steps with R and GitHub
Quiz: Git Integration
10.
Getting The Most Out of R
Efficient Coding Practices
Analytical Best Practices
Conclusion
11.
Appendix
RStudio Orientation
Getting Support in R
Project
Premium
Credit Card Fraud Detection using the R Language
Home
/
Courses
/
Data Science in R: From Basics to Machine Learning
Quiz: Git Integration
Test your knowledge of Git integration with R.
We'll cover the following...
This quiz tests your
...