Majority Male Age Solution Review
Let's go over the solution for the “Male Age” exercise.
We'll cover the following...
We'll cover the following...
What the majority male age solution looks like
Press + to interact
Python 3.8
from glob import globimport pandas as pdimport seaborn as snsimport pydicomimport numpy as npfrom matplotlib import pyplot as pltdata = sorted(glob("stage_2_images/*.dcm"))patients = []for t in data:data = pydicom.dcmread(t)patient = {}patient["Age"] = data.PatientAgepatient["Sex"] = data.PatientSexpatients.append(patient)df_patients = pd.DataFrame(patients, columns=["Age", "Sex"])df_patients["Age"] = pd.to_numeric(df_patients["Age"])df_patients["Age"] = pd.to_numeric(df_patients[df_patients['Sex']=='M']["Age"])sorted_ages = np.sort(df_patients["Age"].values)plt.style.use('seaborn-whitegrid')plt.figure(figsize=(15, 5))plt.hist(sorted_ages[:-2], bins=[i for i in range(100)])plt.title("distribution by age", fontsize=18, pad=10)plt.xlabel("age", labelpad=10)plt.xticks([i*10 for i in range(11)])plt.ylabel("count of male patients", labelpad=10)plt.show()plt.savefig("output/graph.png")