...

/

Majority Male Age Solution Review

Majority Male Age Solution Review

Let's go over the solution for the “Male Age” exercise.

We'll cover the following...

What the majority male age solution looks like

Python 3.8
from glob import glob
import pandas as pd
import seaborn as sns
import pydicom
import numpy as np
from matplotlib import pyplot as plt
data = sorted(glob("stage_2_images/*.dcm"))
patients = []
for t in data:
data = pydicom.dcmread(t)
patient = {}
patient["Age"] = data.PatientAge
patient["Sex"] = data.PatientSex
patients.append(patient)
df_patients = pd.DataFrame(patients, columns=["Age", "Sex"])
df_patients["Age"] = pd.to_numeric(df_patients["Age"])
df_patients["Age"] = pd.to_numeric(df_patients[df_patients['Sex']=='M']["Age"])
sorted_ages = np.sort(df_patients["Age"].values)
plt.style.use('seaborn-whitegrid')
plt.figure(figsize=(15, 5))
plt.hist(sorted_ages[:-2], bins=[i for i in range(100)])
plt.title("distribution by age", fontsize=18, pad=10)
plt.xlabel("age", labelpad=10)
plt.xticks([i*10 for i in range(11)])
plt.ylabel("count of male patients", labelpad=10)
plt.show()
plt.savefig("output/graph.png")

Explanation of the majority male age solution

...