...
/Solution Review: Retraining a Machine Learning Model
Solution Review: Retraining a Machine Learning Model
Review the solution of retraining a machine learning model in ML.NET.
We'll cover the following...
The complete solution is available in the following playground:
using Microsoft.ML; using Microsoft.ML.Data; using System; using System.Linq; using System.IO; using System.Collections.Generic; namespace ModelSavingExample.ConsoleApp { public partial class ModelSavingExample { /// <summary> /// model input class for ModelSavingExample. /// </summary> #region model input class public class ModelInput { [LoadColumn(0)] [ColumnName(@"col0")] public string Col0 { get; set; } [LoadColumn(1)] [ColumnName(@"col1")] public float Col1 { get; set; } } #endregion /// <summary> /// model output class for ModelSavingExample. /// </summary> #region model output class public class ModelOutput { [ColumnName(@"col0")] public float[] Col0 { get; set; } [ColumnName(@"col1")] public uint Col1 { get; set; } [ColumnName(@"Features")] public float[] Features { get; set; } [ColumnName(@"PredictedLabel")] public float PredictedLabel { get; set; } [ColumnName(@"Score")] public float[] Score { get; set; } } #endregion private static string MLNetModelPath = Path.GetFullPath("ModelSavingExample.mlnet"); public static readonly Lazy<PredictionEngine<ModelInput, ModelOutput>> PredictEngine = new Lazy<PredictionEngine<ModelInput, ModelOutput>>(() => CreatePredictEngine(), true); private static PredictionEngine<ModelInput, ModelOutput> CreatePredictEngine() { var mlContext = new MLContext(); ITransformer mlModel = mlContext.Model.Load(MLNetModelPath, out var _); return mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(mlModel); } public static IOrderedEnumerable<KeyValuePair<string, float>> PredictAllLabels(ModelInput input) { var predEngine = PredictEngine.Value; var result = predEngine.Predict(input); return GetSortedScoresWithLabels(result); } public static IOrderedEnumerable<KeyValuePair<string, float>> GetSortedScoresWithLabels(ModelOutput result) { var unlabeledScores = result.Score; var labelNames = GetLabels(result); Dictionary<string, float> labledScores = new Dictionary<string, float>(); for (int i = 0; i < labelNames.Count(); i++) { // Map the names to the predicted result score array var labelName = labelNames.ElementAt(i); labledScores.Add(labelName.ToString(), unlabeledScores[i]); } return labledScores.OrderByDescending(c => c.Value); } private static IEnumerable<string> GetLabels(ModelOutput result) { var schema = PredictEngine.Value.OutputSchema; var labelColumn = schema.GetColumnOrNull("col1"); if (labelColumn == null) { throw new Exception("col1 column not found. Make sure the name searched for matches the name in the schema."); } // Key values contains an ordered array of the possible labels. This allows us to map the results to the correct label value. var keyNames = new VBuffer<float>(); labelColumn.Value.GetKeyValues(ref keyNames); return keyNames.DenseValues().Select(x => x.ToString()); } public static ModelOutput Predict(ModelInput input) { var predEngine = PredictEngine.Value; return predEngine.Predict(input); } } }
Playground showing the complete solution with the code to train the model
Solving the challenge
First, we insert some code into the Train()
method inside the ...