Data Science for Non-Programmers

0%
1.What is Data Science
The Buzzword "Data Science"Data Science LifecyclePython for Data Science
2.Python Basics
Hello WorldVariables and Data TypesOperatorsConditional StatementsFunctionsListsLoopsPackages and ModulesExercise: Average of a ListSolution Review: Average of a ListExercise: Factorial of a NumberSolution Review: Factorial of a Number
3.Handling Tabular Data in Python
Importing Data in CSV Files with PandasIndexing and SelectionFiltering DataApplying Functions to DataAggregating DataGrouping DataPivot TablesPlotting Data 1: Univariate PlotsPlotting Data 2: Bivariate PlotsTest Your Knowledge
4.Data Cleaning
Introduction to Data CleaningData TypesMissing ValuesDuplicatesInconsistent DataOutliersOutlier Detection and RemovalExercise: Cleaning NYC Property SalesSolution Review: Cleaning NYC Property Sales
5.Exploratory Data Analysis
IntroductionAnalyzing Individual QuantitiesExploring Categorical QuantitiesExploring Numerical QuantitiesCorrelation and HeatmapsExercise: Exploring E-CommerceSolution Review: Exploring E-CommerceBusiness Example: RFM Analysis in Python
6.Statistical Inference
The Basics of Statistical InferenceConfidence IntervalsHypothesis TestingOne Sample t-TestTwo Sample t-TestPaired t-Test
7.Predictive Models
A Simple ModelModel Fitting on a Loss FunctionGradient DescentOptimization with Gradient DescentSimple Linear RegressionMultiple Linear RegressionEvaluating Regression ModelsLogistic RegressionEvaluating Logistic Regression ModelsExercise: Churn PredictionSolution Review: Churn Prediction
8.Machine Learning
Why Machine LearningMachine Learning PipelineDecision TreesRandom ForestsSupport Vector MachinesEnsembles: Bagging vs BoostingClustering for Unsupervised LearningK-Means on Two-Dimensional DataK-Means on n-Dimensional DataTest your KnowledgeConclusion
Project
Premium
How to Predict the Traffic Volume Using Machine Learning
Mock Interview
Premium
Fundamentals of Data Science