Challenge Solution Review
In this lesson, we explain the solution to the last challenge lesson.
We'll cover the following...
We'll cover the following...
Python 3.5
Saved
import sklearn.datasets as datasetsfrom sklearn.model_selection import train_test_split, GridSearchCVfrom sklearn.ensemble import GradientBoostingClassifierX, y = datasets.load_breast_cancer(return_X_y=True)train_x, test_x, train_y, test_y = train_test_split(X,y,test_size=0.2,random_state=42)gb = GradientBoostingClassifier(random_state=10)param_grid = [{"n_estimators": [1, 2, 4, 16, 32],"learning_rate": [0.05, 0.1, 0.2, 0.4],"min_samples_leaf": [1, 2, 4, 8],}]cv = GridSearchCV(gb, param_grid=param_grid, scoring="f1", n_jobs=4)cv.fit(train_x, train_y)print("The best F1-score is {}.".format(cv.best_score_))print("The parameter of best estimator is {}.".format(cv.best_params_))
First, we use load_breast_cancer to load the breast cancer dataset at line 5. We split it into two parts at line 7, where the test set accounts for 20%.
A ...