Creation in NumPy
Explore key NumPy array creation techniques including zeros, ones, custom arrays, random arrays, linspace, and mesh grids. Understand how to reshape arrays and prepare data structures for analysis and machine learning tasks.
For using numpy, import the numpy library.
import numpy
Create an Array of Zeros
To create a numpy array containing zeros, write:
np.zeros(size)
To create an array of size 9 write:
np.zeros(9)
Here is how this array is stored in memory:
┌───┬───┬───┬───┬───┬───┬───┬───┬───┐
Z │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │
└───┴───┴───┴───┴───┴───┴───┴───┴───┘
Create an Array of Ones
To create a numpy array containing ones, write:
np.ones(size).
To create an array of size 9 write:
np.ones(9)
Here is how this array is stored in memory:
┌───┬───┬───┬───┬───┬───┬───┬───┬───┐
Z │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │
└───┴───┴───┴───┴───┴───┴───┴───┴───┘
Create an Array of 0’s and 1’s
To create an array of zeros and ones, use np.array([1,0,0,0,0,0,1,0]):
Here is how the array is stored in memory:
┌───┬───┬───┬───┬───┬───┬───┬───┬───┐
Z │ 1 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 1 │ 0 │
└───┴───┴───┴───┴───┴───┴───┴───┴───┘
Create an Array of 2’s
To create an array of 2’s write: 2*np.ones(size).
To create an array of 2’s of size 9 write: 2*np.ones(9).
Here is how the array is stored in memory:
┌───┬───┬───┬───┬───┬───┬───┬───┬───┐
Z │ 2 │ 2 │ 2 │ 2 │ 2 │ 2 │ 2 │ 2 │ 2 │
└───┴───┴───┴───┴───┴───┴───┴───┴───┘
Create a NumPy Array of any Length
To create an array of any length write: np.arange(size).
To create an array of size 9 write :
np.arange(9).
Here is how the array is stored in memory:
┌───┬───┬───┬───┬───┬───┬───┬───┬───┐
Z │ 0 │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │
└───┴───┴───┴───┴───┴───┴───┴───┴───┘
Reshape a NumPy Array into a Column Vector
To reshape a numpy array,write: np.arange(size).reshape(size,1).
To reshape a numpy array into 9 rows and 1 column ,write: np.arange(9).reshape(9,1).
Here is how the array is stored is stored in memory:
┌───┐
│ 0 │
├───┤
│ 1 │
├───┤
│ 2 │
├───┤
│ 3 │
├───┤
Z │ 4 │
├───┤
│ 5 │
├───┤
│ 6 │
├───┤
│ 7 │
├───┤
│ 8 │
└───┘
Generate Array of Random Numbers and in Grid Format
To generate an array of random size, write: np.random.randint(0,size,(x_dimension,y_dimension)).
To generate an array of random numbers from 0 to 9 and x dimension 3 and y dimension 3, write: np.random.randint(0,9,(3,3)).
Here is how the array is stored in memory:
┌───┬───┬───┐
│ 4 │ 5 │ 7 │
├───┼───┼───┤
Z │ 0 │ 2 │ 6 │
├───┼───┼───┤
│ 8 │ 4 │ 0 │
└───┴───┴───┘
Create a Linspace
To create evenly spaced numbers over a specified interval write :
np.linspace(start, stop, size)
To create a linspace of range 0-1 and size 5 , write : Z = np.linspace(0, 1, 5).
Here is how it is stored in memory:
┌──────┬──────┬──────┬──────┬──────┐
Z │ 0.00 │ 0.25 │ 0.50 │ 0.75 │ 1.00 │
└──────┴──────┴──────┴──────┴──────┘
Create a Mesh Grid
To create a dense multi-dimensional “meshgrid”. ,write: np.mgrid[0:x_dimension,0:y_dimenion]
To create a grid in numpy of size(3*3),write: np.mgrid[0:3,0:3]
Here is how a mesh grid is stored in memory:
┌───┬───┬───┐ ┌───┬───┬───┐
│ 0 │ 0 │ 0 │ │ 0 │ 1 │ 2 │
├───┼───┼───┤ ├───┼───┼───┤
Z │ 1 │ 1 │ 1 │ │ 0 │ 1 │ 2 │
├───┼───┼───┤ ├───┼───┼───┤
│ 2 │ 2 │ 2 │ │ 0 │ 1 │ 2 │
└───┴───┴───┘ └───┴───┴───┘
Solve this Quiz!
How would you create a null vector of size 10?
import numpy as np
np.zeros(10)
import numpy as np
np.ones(10)
Now that we have learned to create a NumPy, let’s move on to the next lesson “Reshaping in NumPy”.