Search⌘ K
AI Features

Continuous Probability Distributions

Learn to define and work with continuous probability distributions using JAX. Understand concepts such as the cumulative distribution function, probability density function, moments, and apply these to common distributions including Gaussian, uniform, and exponential. This lesson provides foundational knowledge for probabilistic modeling and statistical analysis in deep learning.

Probability distribution

A probability distribution is a function that gives the probability of occurrence of a random event. It can be either discrete or continuous, depending on the domain. We can formally define it as:

P:AR\mathcal P: \mathcal A\to \mathcal R

Here A\mathcal A can determine the distribution as either discrete or continuous as being a discrete or continuous set, respectively.

There are a couple of useful ways to describe a probability distribution:

  • Cumulative Distribution Function (CDF)
  • Probability Density Function (PDF)

Cumulative Distribution Function (CDF)

The CDF of a distribution is the value it will take for xx less than (or equal to) the given value (generalized as XX). Formally,

FX(x)=P(Xx)=xfX(u)duF_X(x) = {P}(X\leq x) = \int_{-\infty}^x f_X(u) \, du

Note: Since probabilities are always non-negative, CDF is a non-decreasing function.

Probability Density Function (PDF)

More often, we are interested in calculating the value for a particular xx rather than the whole limit. Here we can use the Probability Density Function (PDF). This can be calculated by taking the derivative of the CDF:

fX(x)=ddxFX(x)f_X(x) = \frac{d}{dx} F_X(x) ...