Convert and Encode Data Types
Explore how to convert and encode various data types in pandas to enhance data handling. Understand methods like astype, to_numeric, to_datetime, apply custom functions, and convert_dtypes for efficient data transformation.
Convert data types
There are four main ways we can convert the data type of DataFrame columns:
We can use the
astype()function to enforce apandasdtype.We can use the
to_functions liketo_datetime(),to_timedelta(), andto_numeric()for manual dtype conversion.We can use the
apply()function to apply the custom Python function to columns.We can use the
convert_dtypes()function for automatic dtype inference and conversion.
Lets illustrate these different ways by using a dataset of students’ demographics and academic performance.
There are a series of changes we need to make to this dataset:
Convert
student_idfrom float to the integer type.Convert
genderfrom object (aka string) to category type.Convert
enroll_yearfrom object to integer type.Convert
birthdatefrom object to datetime type.Convert
has_scholarshipfrom integer to ...