Kernel Linear Regression

Learn to implement kernel linear regression for a single target.

We'll cover the following...

Single target example

It’s possible to reformulate generalized linear regression to incorporate the kernel trick. For example, the loss function L(w)L(\bold w) for generalised linear regression with a single target is as follows:

L(w)=ϕ(X)wy22+λw22L(\bold w)= \|\phi(X) \bold w-\bold y\|_2^2 + \lambda \|\bold w\|_2^2

Note:

wTw=w22\bold w^T\bold w = \|\bold w\|_2^2

Setting the derivative of the loss with respect to w\bold w to 0\bold 0 results in the following:

ϕ(X)T(ϕ(X)wy)+λw=0w=1λϕ(X)T(ϕ(X)wy)w=ϕ(X)Ta\begin{align*} & \phi(X)^T(\phi(X)\bold w-\bold y)+\lambda \bold w = \bold 0 \\ & \bold w = -\frac{1}{\lambda}\phi(X)^T(\phi(X)\bold w-\bold y) \\ & \bold w = \phi(X)^T\bold a \\ \end{align*}

Here, a=1λ(ϕ(X)wy)\bold a=-\frac{1}{\lambda}(\phi(X)\bold w-\bold y).

Reparameterization

We can now parametrize the loss function with parameter vector ...