Search⌘ K

Depicting the Transformation O-gate

Understand the O-gate transformation applied to qubits and its reversible nature. Learn how different functions affect qubit states, including behavior on superpositions. Discover how the quantum oracle gate enables efficient problem solving through quantum algorithms like Deutsch's.

We'll cover the following...

The following figure depicts the transformation gate OiO_i:

Let’s say, i=0i=0. In that case, we’ll apply the function f0f_0. Per definition, f0(x)=0f_0(x)=0. When we insert this into the above equation, we can see the output of OiO_i is equal to its input:

O0(xy)=xyf0(x)=xy0=xyO_0(|x\rangle\otimes|y\rangle)=|x\rangle\otimes|y\oplus|f_0(x)\rangle=|x\rangle\otimes|y\oplus|0\rangle=|x\rangle\otimes|y\rangle

We can safely state that not changing a state is reversible.

When i=1i=1, we apply the function f1f_1, which returns 0 for x=0x=0 and 1 for x=1x=1. Thus, f1(x)=xf_1(x)=x.

O1(xy)=xyf1(x)=xyxO_1(|x\rangle\otimes|y\rangle)=|x\rangle\otimes|y\oplus f_1(x)\rangle=|x\rangle\otimes|y\oplus x\rangle

The truth table of the term xyx|x\rangle\otimes|y\oplus x\rangle shows that it is reversible.

When we apply f2f​_2, it returns 1 for x=0x=0 and 0 for x=1x=1. We can then say f2f​_2 f2(x)=x1f_2(x)=x\oplus1.

O2(xy)=xyf2(x)=xyx1O_2(|x\rangle\otimes|y\rangle)=|x\rangle\otimes|y\oplus f_2(x)\rangle=|x\rangle\otimes|y\oplus x \oplus 1\rangle

The truth table discloses that the term xyx1|x\rangle\otimes|y\oplus x \oplus 1\rangle is reversible, too.

Finally, f3f_3 always returns 1.

O3(xy)=xyf3(x)=xy1)O_3(|x\rangle\otimes|y\rangle)=|x\rangle\otimes|y\oplus|f_3(x)\rangle=|x\rangle\otimes |y\oplus 1\rangle)

The output is like the input, but with a reversed yy.

The truth table shows the following:

  • OiO_i is a valid two-qubit gate for all ii
  • The output of OiO_i

The following truth table shows how the OiO_i-gate transforms pairs of qubits in the basis states.

As usual, when we only look at qubits in the basis states, there’s nothing special with a quantum circuit. However, things get interesting when the qubits are in a state of superposition.

Let’s input the states +|+\rangle ...