...

/

Depicting the Transformation O-gate

Depicting the Transformation O-gate

Get introduced to the concept of the transformation O-gate.

We'll cover the following...

The following figure depicts the transformation gate OiO_i:

Let’s say, i=0i=0. In that case, we’ll apply the function f0f_0. Per definition, f0(x)=0f_0(x)=0. When we insert this into the above equation, we can see the output of OiO_i is equal to its input:

O0(xy)=xyf0(x)=xy0=xyO_0(|x\rangle\otimes|y\rangle)=|x\rangle\otimes|y\oplus|f_0(x)\rangle=|x\rangle\otimes|y\oplus|0\rangle=|x\rangle\otimes|y\rangle

We can safely state that not changing a state is reversible.

When i=1i=1, we apply the function f1f_1, which returns 0 for x=0x=0 and 1 for x=1x=1. Thus, f1(x)=xf_1(x)=x.

O1(xy)=xyf1(x)=xyxO_1(|x\rangle\otimes|y\rangle)=|x\rangle\otimes|y\oplus f_1(x)\rangle=|x\rangle\otimes|y\oplus x\rangle

The truth table of the term xyx|x\rangle\otimes|y\oplus x\rangle shows that it is reversible.

When we apply f2f​_2, it returns 1 for x=0x=0 and 0 for x=1x=1. We can then say f2f​_2 f2(x)=x1f_2(x)=x\oplus1.

O2(xy)=xyf2(x)=xyx1O_2(|x\rangle\otimes|y\rangle)=|x\rangle\otimes|y\oplus f_2(x)\rangle=|x\rangle\otimes|y\oplus x \oplus 1\rangle

The truth table discloses that the term xyx1|x\rangle\otimes|y\oplus x \oplus 1\rangle is reversible, too.

Finally, f3f_3 always returns 1.

O3(xy)=xyf3(x)=xy1)O_3(|x\rangle\otimes|y\rangle)=|x\rangle\otimes|y\oplus|f_3(x)\rangle=|x\rangle\otimes |y\oplus 1\rangle)

The output is like the input, but with a reversed yy.

The truth table shows the following:

  • OiO_i is a valid two-qubit gate for all ii
  • The output of OiO_i

The following truth table shows how the OiO_i-gate transforms pairs of qubits in the basis states.

As usual, when we only look at qubits in the basis states, there’s nothing special with a quantum circuit. However, things get interesting when the qubits are in a state of superposition.

Let’s input the states +|+\rangle ...