Search⌘ K

Entanglement

Learn how quantum entanglement connects qubit states through superposition and CNOT gates. Understand how measuring one entangled qubit influences the other and how these states are represented mathematically in quantum machine learning.

We'll cover the following...

What if we constructed the two-qubit system differently? When we discard the factors, the four basis states (a0,b0,...a_0,b_0, ...) and replace them with general variables. We can state the following equation for an arbitrary two-qubit system.

ψ=α00+β01+γ10+δ11=[αβγδ]|\psi\rangle=\alpha|0\rangle|0\rangle+\beta|0\rangle|1\rangle+\gamma|1\rangle|0\rangle+\delta|1\rangle|1\rangle=\begin{bmatrix}\alpha \\ \beta \\ \gamma \\ \delta \end{bmatrix}

We’re holding on to the normalization of the sum of all probabilities must be 1, but we do not insist that αδ\alpha\delta=βγ\beta\gamma.

In the lesson Implementation of CNOT gate, we learned about the CNOT-gate. It applies the X-gate to the target qubit only if we measure the control qubit as a 1.

We can create the CNOT-gate from the two-qubit identity matrix by interchanging the order of the last two elements, like this:

CNOT=[1000010000010010]CNOT=\begin{bmatrix}1&0&0&0\\0&1&0&0\\0&0&0&1\\0&0&1&0\end{bmatrix}

The CNOT-gate takes two inputs and gives two outputs. The first input is called the control qubit. The second input is called the target qubit.

The result of the CNOT-gate is straightforward if the control qubit is in a basic state 0|0\rangle or 1|1\rangle. If the control qubit is 0|0\rangle, then nothing happens. The output equals the input. If the control qubit is 1|1\rangle, the CNOT-gate applies the XX-gate (NOT-gate) on the target qubit. It flips the state of the target qubit.

The following figure depicts the truth table of the CNOT-gate.

It gets interesting when the control qubit is in superposition—for instance, when we apply the Hadamard gate to the first qubit before we apply the CNOT-gate.

The following equation denotes the state of our two-qubit system.

CNOT(HI)00CNOT\cdot(H\otimes I)|00\rangle

=[1000010000010010]12[1010010110100101][1000]\qquad\qquad=\begin{bmatrix}1&0&0&0\\0&1&0&0\\0&0&0&1\\0&0&1&0\end{bmatrix}\cdot \frac{1}{\sqrt{2}}\begin{bmatrix}1&0&1&0\\0&1&0&1\\1&0&-1&0\\0&1&0&-1\end{bmatrix}\begin{bmatrix} 1\\ 0\\0 \\ 0\end{bmatrix}

=[120120012012012012120120][1000]=[120012]\qquad\qquad=\begin{bmatrix} \tfrac{1}{\sqrt{2}} & 0 & \tfrac{1}{\sqrt{2}} & 0 \\ 0 & \tfrac{1}{\sqrt{2}} & 0 & \tfrac{1}{\sqrt{2}} \\ 0 & \tfrac{1}{\sqrt{2}} & 0 & -\tfrac{1}{\sqrt{2}} \\ \tfrac{1}{\sqrt{2}} & 0 & -\tfrac{1}{\sqrt{2}} & 0 \\ \end{bmatrix}\cdot\begin{bmatrix} 1\\ 0\\0 \\ 0\end{bmatrix}=\begin{bmatrix} \tfrac{1}{\sqrt{2}}\\ 0\\0 \\ \tfrac{1}{\sqrt{2}}\end{bmatrix} ...