Search⌘ K

Rules of Inference

Explore how to use rules of inference to simplify the validation of propositional logic arguments. Understand key concepts like modus ponens and modus tollens, and follow a case study to apply these rules for proving argument validity without exhaustive truth tables.

Truth tables and exponential explosion

We know there’s a way to establish the validity (or invalidity) of any propositional logic argument using the truth-table method. It’s simple and easy to mechanize in terms of actionable steps. But this method suffers from one small problem. Let’s see if we can identify the problem.

Imagine we had to prove if the following argument is valid or not. We would have to create the associated table given below:

pq,p,q\text{p} → \text{q}, \text{p}, ∴\text{q}

Two Symbols for a Table with Four Rows

p

q

p → q

False

False

True

False

True

True

True

False

False

True

True

True

Let’s further imagine extending the argument slightly, where one more symbol is added to it:

p,pq,qr,r\text{p}, \text{p} → \text{q}, \text{q} → \text{r}, ∴\text{r}

Three Symbols Require a Table with Eight Rows

p

q

r

p → q

q → r

False

False

False

True

True

False

False

True

True

True

False

True

False

True

False

False

True

True

True

True

True

False

False

False

True

True

False

True

False

True

True

True

False

True

False

True

True

True

True

True

Here’s how we’d extend the same argument, but this time by incorporating all 26 letters of the English alphabet:

a,ab,bc,...,yzza,a \to b,b \to c,...,y \to z ∴ z ...