HomeCoursesGrokking Dynamic Programming Interview

Intermediate

25h

Updated 2 weeks ago

Grokking Dynamic Programming Interview
Save

The ultimate guide to dynamic programming interviews. Developed by FAANG engineers, it equips you with strategic DP skills, practice with real-world questions, and patterns for efficient solutions.
Join 2.7 million developers at
Pick a Language
C++
Java
JavaScript
Python
Pick a Language
JavaJava
Overview
Content
Reviews
Related
Some of the toughest questions in technical interviews require dynamic programming solutions. Dynamic programming (DP) is an advanced optimization technique applied to recursive solutions. However, DP is not a one-size-fits-all technique, and it requires practice to develop the ability to identify the underlying DP patterns. With a strategic approach, coding interview prep for DP problems shouldn’t take more than a few weeks. This course starts with an introduction to DP and thoroughly discusses five DP patterns. You’ll learn to apply each pattern to several related problems, with a visual representation of the working of the pattern, and learn to appreciate the advantages of DP solutions over naive solutions. After completing this course, you will have the skills you need to unlock even the most challenging questions, grok the coding interview, and level up your career with confidence. This course is also available in C++, JavaScript, and Python—with more coming soon!
Some of the toughest questions in technical interviews require dynamic programming solutions. Dynamic programming (DP) is an adv...Show More

WHAT YOU'LL LEARN

A deep understanding of the essential patterns behind common dynamic programming interview questions—without having to drill endless problem sets
The ability to identify and apply the underlying pattern in an interview question by assessing the problem statement
Familiarity with dynamic programming techniques with hands-on practice in a setup-free coding environment
The ability to efficiently evaluate the tradeoffs between time and space complexity in different solutions
A flexible conceptual framework for solving any dynamic programming question, by connecting problem characteristics and possible solution techniques
A deep understanding of the essential patterns behind common dynamic programming interview questions—without having to drill endless problem sets

Show more

Content

1.

Getting Started

3 Lessons

Learn how to use dynamic programming to solve optimization problems efficiently for coding interviews.

3.

Unbounded Knapsack

6 Lessons

Go hands-on with optimizing recursive problems using dynamic programming for maximum efficiency.

7.

Conclusion

1 Lessons

Piece together the parts of your learning journey and continue improving your skills.
Certificate of Completion
Showcase your accomplishment by sharing your certificate of completion.
Developed by MAANG Engineers
Every Educative resource is designed by our in-house team of ex-MAANG software engineers and PhD computer science educators — subject matter experts who’ve shipped production code at scale and taught the theory behind it. The goal is to get you hands-on with the skills you need to stay ahead in today's constantly evolving tech landscape. No videos, no fluff — just interactive, project-based learning with personalized feedback that adapts to your goals and experience.

Trusted by 2.7 million developers working at companies

Hands-on Learning Powered by AI

See how Educative uses AI to make your learning more immersive than ever before.

Instant Code Feedback

Evaluate and debug your code with the click of a button. Get real-time feedback on test cases, including time and space complexity of your solutions.

Adaptive Learning

Explain with AI

AI Code Mentor

Free Resources

Frequently Asked Questions

What is the difference between memoization and tabulation in dynamic programming?

Memoization is a top-down approach in which recursive calls are made, and solutions to subproblems are stored in memory to prevent redundant calculations. Tabulation, in contrast, is a bottom-up approach in which you iteratively solve subproblems and fill out a table from the base case to the final solution. Both techniques help improve efficiency but are used based on the problem’s nature.

How can I practice dynamic programming to improve interviews?

How can I recognize if a problem is suited for dynamic programming?

Why is dynamic programming emphasized in technical interviews?