Search⌘ K
AI Features

Solution: The Number of Good Subsets

Explore how to solve the problem of counting good subsets whose product contains distinct prime factors using dynamic programming with bit masks. This lesson guides you through representing prime factors efficiently, managing subset combinations, and optimizing calculations, helping you handle complex constraints and large inputs effectively.

Statement

For a given integer array, nums, you can say that a subset of nums is called “good” if the product of its elements can be expressed as a product of one or more distinct prime numbers, i.e., no prime factor appears more than once.

For example, if nums =[1,2,5,6]= [1, 2, 5, 6], then:

  • [2,5][2, 5], [1,2,5][1, 2, 5], and [6][6] are good subsets with products 2×5=102 \times 5 = 10, 1×2×5=101 \times 2 \times 5 = 10, and 2×3=62 \times 3 = 6, respectively.

  • [2,6][2, 6] ...