Search⌘ K
AI Features

Solution: The Number of Good Subsets

Explore how to efficiently count good subsets in an integer array where no prime factor repeats in the product. Learn to apply dynamic programming combined with bitmasks to track prime factors, handle valid subsets, and optimize computations. This lesson teaches a method to solve subset problems with constraints on prime factors in JavaScript.

Statement

For a given integer array, nums, you can say that a subset of nums is called “good” if the product of its elements can be expressed as a product of one or more distinct prime numbers, i.e., no prime factor appears more than once.

For example, if nums =[1,2,5,6]= [1, 2, 5, 6], then:

  • [2,5][2, 5], [1,2,5][1, 2, 5], and [6][6] are good subsets with products 2×5=102 \times 5 = 10, 1×2×5=101 \times 2 \times 5 = 10, and 2×3=62 \times 3 = 6, respectively.

  • [2,6][2, 6] ...