Exercise
Explore SSD technology through simulation exercises that reveal how different flash storage methods operate. Learn to analyze logs, estimate performance, and understand the impact of garbage collection and workload skew on SSD efficiency. This lesson helps build practical knowledge of SSD behaviors and optimization techniques.
Simulator
This section introduces ssd.py, a simple SSD simulator you can use to understand better how SSDs work. See the previous lesson for details on how to run the simulator.
#! /usr/bin/env python
from __future__ import print_function
from collections import *
from optparse import OptionParser
import random
import string
class ssd:
def __init__(self, ssd_type, num_logical_pages, num_blocks, pages_per_block,
block_erase_time, page_program_time, page_read_time,
high_water_mark, low_water_mark, trace_gc, show_state):
# type
self.TYPE_DIRECT = 1
self.TYPE_LOGGING = 2
self.TYPE_IDEAL = 3
if ssd_type == 'direct':
self.ssd_type = self.TYPE_DIRECT
elif ssd_type == 'log':
self.ssd_type = self.TYPE_LOGGING
elif ssd_type == 'ideal':
self.ssd_type = self.TYPE_IDEAL
else:
print('bad SSD type (%s)' % ssd_type)
exit(1)
# size
self.num_logical_pages = num_logical_pages
self.num_blocks = num_blocks
self.pages_per_block = pages_per_block
# parameters
self.block_erase_time = block_erase_time
self.page_program_time = page_program_time
self.page_read_time = page_read_time
# init each page of each block to INVALID
self.STATE_INVALID = 1
self.STATE_ERASED = 2
self.STATE_VALID = 3
self.num_pages = self.num_blocks * self.pages_per_block
self.state = {}
for i in range(self.num_pages):
self.state[i] = self.STATE_INVALID
# data itself
self.data = {}
for i in range(self.num_pages):
self.data[i] = ' '
# LOGGING stuff
# reverse map: for each physical page, what LOGICAL page refers to it?
# which page to write to right now?
self.current_page = -1
self.current_block = 0
# gc counts
self.gc_count = 0
self.gc_current_block = 0
self.gc_high_water_mark = high_water_mark
self.gc_low_water_mark = low_water_mark
self.gc_trace = trace_gc
self.show_state = show_state
# can use this as a log block
self.gc_used_blocks = {}
for i in range(self.num_blocks):
self.gc_used_blocks[i] = 0
# counts so as to help the GC
self.live_count = {}
for i in range(self.num_blocks):
self.live_count[i] = 0
# FTL
self.forward_map = {}
for i in range(self.num_logical_pages):
self.forward_map[i] = -1
self.reverse_map = {}
for i in range(self.num_pages):
self.reverse_map[i] = -1
# stats
self.physical_erase_count = {}
self.physical_read_count = {}
self.physical_write_count = {}
for i in range(self.num_blocks):
self.physical_erase_count[i] = 0
self.physical_read_count[i] = 0
self.physical_write_count[i] = 0
self.physical_erase_sum = 0
self.physical_write_sum = 0
self.physical_read_sum = 0
self.logical_trim_sum = 0
self.logical_write_sum = 0
self.logical_read_sum = 0
self.logical_trim_fail_sum = 0
self.logical_write_fail_sum = 0
self.logical_read_fail_sum = 0
return
def blocks_in_use(self):
used = 0
for i in range(self.num_blocks):
used += self.gc_used_blocks[i]
return used
def physical_erase(self, block_address):
page_begin = block_address * self.pages_per_block
page_end = page_begin + self.pages_per_block - 1
for page in range(page_begin, page_end + 1):
self.data[page] = ' '
self.state[page] = self.STATE_ERASED
# now, definitely NOT in use
self.gc_used_blocks[block_address] = 0
# STATS
self.physical_erase_count[block_address] += 1
self.physical_erase_sum += 1
return
def physical_program(self, page_address, data):
self.data[page_address] = data
self.state[page_address] = self.STATE_VALID
# STATS
self.physical_write_count[page_address / self.pages_per_block] += 1
self.physical_write_sum += 1
return
def physical_read(self, page_address):
# STATS
self.physical_read_count[page_address / self.pages_per_block] += 1
self.physical_read_sum += 1
return self.data[page_address]
def read_direct(self, address):
return self.physical_read(address)
def write_direct(self, page_address, data):
block_address = page_address / self.pages_per_block
page_begin = block_address * self.pages_per_block
page_end = page_begin + self.pages_per_block - 1
old_list = []
for old_page in range(page_begin, page_end + 1):
if self.state[old_page] == self.STATE_VALID:
old_data = self.physical_read(old_page)
old_list.append((old_page, old_data))
self.physical_erase(block_address)
for (old_page, old_data) in old_list:
if old_page == page_address:
continue
self.physical_program(old_page, old_data)
self.physical_program(page_address, data)
self.forward_map[page_address] = page_address
self.reverse_map[page_address] = page_address
return 'success'
def write_ideal(self, page_address, data):
self.physical_program(page_address, data)
self.forward_map[page_address] = page_address
self.reverse_map[page_address] = page_address
return 'success'
def is_block_free(self, block):
first_page = block * self.pages_per_block
if self.state[first_page] == self.STATE_INVALID or self.state[first_page] == self.STATE_ERASED:
if self.state[first_page] == self.STATE_INVALID:
self.physical_erase(block)
self.current_block = block
self.current_page = first_page
self.gc_used_blocks[block] = 1
return True
return False
def get_cursor(self):
if self.current_page == -1:
for block in range(self.current_block, self.num_blocks) + range(0, self.current_block):
if self.is_block_free(block):
return 0
return -1
return 0
def update_cursor(self):
self.current_page += 1
if self.current_page % self.pages_per_block == 0:
self.current_page = -1
return
def write_logging(self, page_address, data, is_gc_write=False):
if self.get_cursor() == -1:
self.logical_write_fail_sum += 1
return 'failure: device full'
# NORMAL MODE writing
assert(self.state[self.current_page] == self.STATE_ERASED)
self.physical_program(self.current_page, data)
self.forward_map[page_address] = self.current_page
self.reverse_map[self.current_page] = page_address
self.update_cursor()
return 'success'
def garbage_collect(self):
blocks_cleaned = 0
for block in range(self.gc_current_block, self.num_blocks) + range(0, self.gc_current_block):
# don't GC the block currently being written to
if block == self.current_block:
continue
# page to start looking for live blocks
page_start = block * self.pages_per_block
# is this page (and hence block) already erased? then don't bother
if self.state[page_start] == self.STATE_ERASED:
continue
# collect list of live physical pages in this block
live_pages = []
for page in range(page_start, page_start + self.pages_per_block):
logical_page = self.reverse_map[page]
if logical_page != -1 and self.forward_map[logical_page] == page:
live_pages.append(page)
# if ONLY live blocks, don't clean it! (why bother with move?)
if len(live_pages) == self.pages_per_block:
continue
# live pages should be copied to current writing location
for page in live_pages:
# live: so copy it someplace new
if self.gc_trace:
print('gc %d:: read(physical_page=%d)' % (self.gc_count, page))
print('gc %d:: write()' % self.gc_count)
data = self.physical_read(page)
self.write(self.reverse_map[page], data)
# finally, erase the block and see if we're done
blocks_cleaned += 1
self.physical_erase(block)
if self.gc_trace:
print('gc %d:: erase(block=%d)' % (self.gc_count, block))
if self.show_state:
print('')
self.dump()
print('')
if self.blocks_in_use() <= self.gc_low_water_mark:
# done! record where we stopped and return
self.gc_current_block = block
self.gc_count += 1
return
# END: block iteration
return
def upkeep(self):
# GARBAGE COLLECTION
if self.blocks_in_use() >= self.gc_high_water_mark:
self.garbage_collect()
# WEAR LEVELING: for future
return
def trim(self, address):
self.logical_trim_sum += 1
if address < 0 or address >= self.num_logical_pages:
self.logical_trim_fail_sum += 1
return 'fail: illegal trim address'
if self.forward_map[address] == -1:
self.logical_trim_fail_sum += 1
return 'fail: uninitialized trim'
self.forward_map[address] = -1
return 'success'
def read(self, address):
self.logical_read_sum += 1
if address < 0 or address >= self.num_logical_pages:
self.logical_read_fail_sum += 1
return 'fail: illegal read address'
if self.forward_map[address] == -1:
self.logical_read_fail_sum += 1
return 'fail: uninitialized read'
# USED for DIRECT and LOGGING and IDEAL
return self.read_direct(self.forward_map[address])
def write(self, address, data):
self.logical_write_sum += 1
if address < 0 or address >= self.num_logical_pages:
self.logical_write_fail_sum += 1
return 'fail: illegal write address'
if self.ssd_type == self.TYPE_DIRECT:
return self.write_direct(address, data)
elif self.ssd_type == self.TYPE_IDEAL:
return self.write_ideal(address, data)
else:
return self.write_logging(address, data)
def printable_state(self, s):
if s == self.STATE_INVALID:
return 'i'
elif s == self.STATE_ERASED:
return 'E'
elif s == self.STATE_VALID:
return 'v'
else:
print('bad state %d' % s)
exit(1)
def stats(self):
print('Physical Operations Per Block')
print('Erases ', end='')
for i in range(self.num_blocks):
print('%3d ' % self.physical_erase_count[i], end='')
print(' Sum: %d' % self.physical_erase_sum)
print('Writes ', end='')
for i in range(self.num_blocks):
print('%3d ' % self.physical_write_count[i], end='')
print(' Sum: %d' % self.physical_write_sum)
print('Reads ', end='')
for i in range(self.num_blocks):
print('%3d ' % self.physical_read_count[i], end='')
print(' Sum: %d' % self.physical_read_sum)
print('')
print('Logical Operation Sums')
print(' Write count %d (%d failed)' % (self.logical_write_sum, self.logical_write_fail_sum))
print(' Read count %d (%d failed)' % (self.logical_read_sum, self.logical_read_fail_sum))
print(' Trim count %d (%d failed)' % (self.logical_trim_sum, self.logical_trim_fail_sum))
print('')
print('Times')
print(' Erase time %.2f' % (self.physical_erase_sum * self.block_erase_time))
print(' Write time %.2f' % (self.physical_write_sum * self.page_program_time))
print(' Read time %.2f' % (self.physical_read_sum * self.page_read_time))
total_time = self.physical_erase_sum * self.block_erase_time + self.physical_write_sum * self.page_program_time + self.physical_read_sum * self.page_read_time
print(' Total time %.2f' % total_time)
return
def dump(self):
# FTL
print('FTL ', end='')
count = 0
ftl_columns = (self.pages_per_block * self.num_blocks) / 7
for i in range(self.num_logical_pages):
if self.forward_map[i] == -1:
continue
count += 1
print('%3d:%3d ' % (i, self.forward_map[i]), end='')
if count > 0 and count % ftl_columns == 0:
print('\n ', end='')
if count == 0:
print('(empty)', end='')
print('')
# FLASH?
print('Block ', end='')
for i in range(self.num_blocks):
out_str = '%d' % i
print(out_str + ' ' * (self.pages_per_block - len(out_str) + 1), end='')
print('')
max_len = len(str(self.num_pages))
for n in range(max_len, 0, -1):
if n == max_len:
print('Page ', end='')
else:
print(' ', end='')
for i in range(self.num_pages):
out_str = str(i).zfill(max_len)[max_len - n]
print(out_str, end='')
if i > 0 and (i+1) % 10 == 0:
print(end=' ')
print('')
print('State ', end='')
for i in range(self.num_pages):
print('%s' % self.printable_state(self.state[i]), end='')
if i > 0 and (i+1) % 10 == 0:
print(end=' ')
print('')
# DATA
print('Data ', end='')
for i in range(self.num_pages):
if self.state[i] == self.STATE_VALID:
print('%s' % self.data[i], end='')
else:
print(' ', end='')
if i > 0 and (i+1) % 10 == 0:
print(end=' ')
print('')
# LIVE
print('Live ', end='')
for i in range(self.num_pages):
if self.state[i] == self.STATE_VALID and self.forward_map[self.reverse_map[i]] == i:
print('+', end='')
else:
print(' ', end='')
if i > 0 and (i+1) % 10 == 0:
print(end=' ')
print('')
return
#
# MAIN PROGRAM
#
parser = OptionParser()
parser.add_option('-s', '--seed', default=0, help='the random seed', action='store', type='int', dest='seed')
parser.add_option('-n', '--num_cmds', default=10, help='number of commands to randomly generate', action='store', type='int', dest='num_cmds')
parser.add_option('-P', '--op_percentages', default='40/50/10', help='if rand, percent of reads/writes/trims', action='store', type='string', dest='op_percentages')
parser.add_option('-K', '--skew', default='', help='if non-empty, skew, e.g., 80/20: 80% of ops to 20% of blocks', action='store', type='string', dest='skew')
parser.add_option('-k', '--skew_start', default=0, help='if --skew, skew after this many writes', action='store', type='int', dest='skew_start')
parser.add_option('-r', '--read_fails', default=0, help='if rand, percent of reads that can fail', action='store', type='int', dest='read_fail')
parser.add_option('-L', '--cmd_list', default='', help='comma-separated list of commands (e.g., r10,w20:a)', action='store', type='string', dest='cmd_list')
parser.add_option('-T', '--ssd_type', default='direct', help='SSD type: ideal, direct, log', action='store', type='string', dest='ssd_type')
parser.add_option('-l', '--logical_pages', default=80, help='number of logical pages in interface', action='store', type='int', dest='num_logical_pages')
parser.add_option('-B', '--num_blocks', default=12, help='number of physical blocks in SSD', action='store', type='int', dest='num_blocks')
parser.add_option('-p', '--pages_per_block', default=10, help='pages per physical block', action='store', type='int', dest='pages_per_block')
parser.add_option('-G', '--high_water_mark', default=10, help='blocks used before gc trigger', action='store', type='int', dest='high_water_mark')
parser.add_option('-g', '--low_water_mark', default=8, help='gc target before stopping gc', action='store', type='int', dest='low_water_mark')
parser.add_option('-R', '--read_time', default=10, help='page read time (usecs)', action='store', type='int', dest='read_time')
parser.add_option('-W', '--program_time', default=40, help='page program time (usecs)', action='store', type='int', dest='program_time')
parser.add_option('-E', '--erase_time', default=1000, help='page erase time (usecs)', action='store', type='int', dest='erase_time')
parser.add_option('-J', '--show_gc', default=False, help='show garbage collector behavior', action='store_true', dest='show_gc')
parser.add_option('-F', '--show_state', default=False, help='show flash state', action='store_true', dest='show_state')
parser.add_option('-C', '--show_cmds', default=False, help='show commands', action='store_true', dest='show_cmds')
parser.add_option('-q', '--quiz_cmds', default=False, help='quiz commands', action='store_true', dest='quiz_cmds')
parser.add_option('-S', '--show_stats', default=False, help='show statistics', action='store_true', dest='show_stats')
parser.add_option('-c', '--compute', default=False, help='compute answers for me', action='store_true', dest='solve')
(options, args) = parser.parse_args()
random.seed(options.seed)
print('ARG seed %s' % options.seed)
print('ARG num_cmds %s' % options.num_cmds)
print('ARG op_percentages %s' % options.op_percentages)
print('ARG skew %s' % options.skew)
print('ARG skew_start %s' % options.skew_start)
print('ARG read_fail %s' % options.read_fail)
print('ARG cmd_list %s' % options.cmd_list)
print('ARG ssd_type %s' % options.ssd_type)
print('ARG num_logical_pages %s' % options.num_logical_pages)
print('ARG num_blocks %s' % options.num_blocks)
print('ARG pages_per_block %s' % options.pages_per_block)
print('ARG high_water_mark %s' % options.high_water_mark)
print('ARG low_water_mark %s' % options.low_water_mark)
print('ARG erase_time %s' % options.erase_time)
print('ARG program_time %s' % options.program_time)
print('ARG read_time %s' % options.read_time)
print('ARG show_gc %s' % options.show_gc)
print('ARG show_state %s' % options.show_state)
print('ARG show_cmds %s' % options.show_cmds)
print('ARG quiz_cmds %s' % options.quiz_cmds)
print('ARG show_stats %s' % options.show_stats)
print('ARG compute %s' % options.solve)
print('')
s = ssd(ssd_type=options.ssd_type,
num_logical_pages=options.num_logical_pages, num_blocks=options.num_blocks, pages_per_block=options.pages_per_block,
block_erase_time=float(options.erase_time), page_program_time=float(options.program_time), page_read_time=float(options.read_time),
high_water_mark=options.high_water_mark, low_water_mark=options.low_water_mark, trace_gc=options.show_gc, show_state=options.show_state)
#
# generate cmds (if not passed in by cmd_list)
#
hot_cold = False
skew_start = options.skew_start
if options.skew != '':
hot_cold = True
skew = options.skew.split('/')
if len(skew) != 2:
print('bad skew specification; should be 80/20 or something like that')
exit(1)
hot_percent = int(skew[0])/100.0
hot_target = int(skew[1])/100.0
if options.cmd_list == '':
max_page_addr = int(options.num_logical_pages)
num_cmds = int(options.num_cmds)
p = options.op_percentages.split('/')
assert(len(p) == 3)
percent_reads, percent_writes, percent_trims = int(p[0]), int(p[1]), int(p[2])
if percent_writes <= 0:
print('must have some writes, otherwise nothing in the SSD!')
exit(1)
printable = string.digits + string.letters
cmd_list = []
valid_addresses = []
while len(cmd_list) < num_cmds:
which_cmd = int(random.random() * 100.0)
if which_cmd < percent_reads:
# READ
if random.randint(0, 99) < int(options.read_fail):
address = random.randint(0, max_page_addr - 1)
else:
if len(valid_addresses) < 2:
continue
address = random.choice(valid_addresses)
cmd_list.append('r%d' % address)
elif which_cmd < percent_reads + percent_writes:
# WRITE
if skew_start == 0 and hot_cold and random.random() < hot_percent:
address = random.randint(0, int(hot_target * (max_page_addr - 1)))
else:
address = random.randint(0, max_page_addr - 1)
if address not in valid_addresses:
valid_addresses.append(address)
data = random.choice(list(printable))
cmd_list.append('w%d:%s' % (address, data))
if skew_start > 0:
skew_start -= 1
else:
# TRIM
if len(valid_addresses) < 1:
continue
address = random.choice(valid_addresses)
cmd_list.append('t%d' % address)
valid_addresses.remove(address)
else:
cmd_list = options.cmd_list.split(',')
s.dump()
print('')
show_state = options.show_state
show_cmds = options.show_cmds
quiz_cmds = options.quiz_cmds
if quiz_cmds:
show_state = True
op = 0
for cmd in cmd_list:
if cmd == '':
break
if cmd[0] == 'r':
# r10
address = int(cmd.split('r')[1])
data = s.read(address)
if show_cmds or (quiz_cmds and options.solve):
print('cmd %3d:: read(%d) -> %s' % (op, address, data))
elif quiz_cmds:
print('cmd %3d:: read(%d) -> ??' % (op, address))
op += 1
elif cmd[0] == 'w':
# w80:b
parts = cmd.split(':')
address = int(parts[0].split('w')[1])
data = parts[1]
rc = s.write(address, data)
if show_cmds or (quiz_cmds and options.solve):
print('cmd %3d:: write(%d, %s) -> %s' % (op, address, data, rc))
elif quiz_cmds:
print('cmd %3d:: command(??) -> ??' % op)
op += 1
elif cmd[0] == 't':
address = int(cmd.split('t')[1])
rc = s.trim(address)
if show_cmds or (quiz_cmds and options.solve):
print('cmd %3d:: trim(%d) -> %s' % (op, address, rc))
elif quiz_cmds:
print('cmd %d:: command(??) -> ??' % op)
op += 1
if show_state:
print('')
s.dump()
print('')
# Do GC?
s.upkeep()
if not show_state:
print('')
s.dump()
print('')
if options.show_stats:
s.stats()
print('')
Questions
-
The exercise will mostly focus on the log-structured SSD, which is simulated with the “-T log” flag. We’ll use the other types of SSDs for comparison. First, run with flags
-T log -s 1 -n 10 -q. Can you figure out which operations took place? Use-cto check your answers (or just use-Cinstead of-q -c). Use different values of-sto generate different random workloads. -
Now just show the commands and see if you can figure out the intermediate states of the Flash. Run with flags
-T log -s 2 -n 10 -Cto show each command. Now, determine the state of the Flash between each command; use-Fto show ...